skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harris, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Viscosity is a fundamental physical property that controls lava flow dynamics, runout distance, and velocity, which are critical factors in assessing and mitigating risks associated with effusive eruptions. Natural lava viscosity is driven by a dynamic interplay among melt, crystals, and bubbles in response to the emplacement conditions. These conditions are challenging to replicate in laboratory experiments, yet this remains the most common method for quantifying lava rheology. Few in situ viscosity measurements exist, but none of those constrains the spatial evolution of viscosity along an entire active lava flow field. Here, we present the first real-time, in situ viscosity map of active lava as measured in the field at Litli-Hrútur, Iceland. We precisely measured a lava viscosity increase of over two orders of magnitude, associated with a temperature decrease, crystallinity increase, and vesicularity decrease from near-vent to distal locations, crossing the pāhoehoe–‘a‘ā transition. Our data expand the limited database of three-phase lava viscosity, which is crucial for improvements and validation of the current numerical, experimental, and petrological approaches used to estimate lava viscosity. Further, this study showcases that field viscometry provides a rapid, accurate, and precise assessment of lava viscosity that can be implemented in eruptive response modeling of lava transport. 
    more » « less
    Free, publicly-accessible full text available November 20, 2025
  2. Recent adaptive radiations provide experimental opportunities to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetic analyses as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, charr species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotskoe represent the most extensive radiation described for the genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages within the clade. We find that changes in genes associated with thyroid signaling and craniofacial development provided a foundational shift in evolution to the lake. The thyroid axis is further implicated in subsequent lineage partitioning events. These results delineate a genetic scenario for the diversification of specialized lineages and highlight a common axis of change biasing the generation of specific forms during adaptive radiation. 
    more » « less
  3. Viscosity is a fundamental physical property of lava that dictates style and rate of effusive transport. Studies of lava viscosity have predominantly focused on measuring re-melted rocks in the laboratory. While these measurements are well-constrained in temperature, shear rate, and oxygen fugacity, they cannot reproduce the complexities of the natural emplacement environment. Field viscosity measurements of active lava are the only way to fully capture lava’s properties, but such measurements are scarce, largely due to a lack of easy-to-use, portable, and accurate measurement devices. Thus, there is a need for developing suitable field instruments to help bolster the understanding of lava. Here, we present a new penetrometer capable of measuring a material’s viscosity under the harsh conditions of natural lava emplacement. This device uses a stainless-steel tube with a semi-spherical tip fixed to a load cell that records axial force when pushed into a material, while simultaneously measuring the penetration depth via a free-moving tube that is pushed backward along the penetration tube. The device is portable (1.5 m long, 5.5 kg in weight) and uses a single-board computer for data acquisition. The penetrometer has an operational range from 2.5 × 102 to 2.1 × 105 Pa s and was calibrated for viscosities ranging from 5.0 × 102 to 1.6 × 105 Pa s. It was deployed to the 2023 Litli-Hrútur eruption in Iceland. These field measurements successfully recorded the in situ viscosities of the lava in the range of 1.2 × 104–3.4 × 104 Pa s, showcasing it as an efficient method of measuring natural lava viscosity. 
    more » « less
  4. Hard rock cores recovered during International Ocean Discovery Program South Atlantic Transect (SAT) Expeditions 390C, 395E, 390, and 393 were digitally imaged using a DMT CoreScan3 line scanner aboard the R/V JOIDES Resolution during Expeditions 390 and 393. Methods outlined here involve modification of the CoreScan3 to scan >1 m long sections of hard rock at a 40 pixel/mm resolution, four times higher resolution than previously achieved during an ocean drilling campaign. This method is combined with a dedicated Python package (StitchIT) written to compile multiple 20 cm frames into high-resolution core section images. Accompanying this report are all compiled high-resolution section images from the SAT, both as high-resolution individual images of each section and as moderate-resolution visual core description–style images. The methods outline best practices for digitally imaging external core surfaces, and the data set is the first to be generated specifically for emerging machine learning and computer vision applications. 
    more » « less
  5. This study aims to understand the spatiotemporal changes in patterns of tropical crop cultivation in Eastern Thailand, encompassing the periods before, during, and after the COVID-19 pandemic. Our approach involved assessing the efficacy of high-resolution (10 m) Sentinel-2 dense image time series for mapping smallholder farmlands. We integrated harmonic regression and random forest to map a diverse array of tropical crop types between summer 2017 and summer 2023, including durian, rice, rubber, eucalyptus, oil palm, pineapple, sugarcane, cassava, mangosteen, coconut, and other crops. The results revealed an overall mapping accuracy of 85.6%, with several crop types exceeding 90%. High-resolution imagery demonstrated particular effectiveness in situations involving intercropping, a popular practice of simultaneously growing two or more plant species in the same patch of land. However, we observed overestimation in the majority of the studied cash crops, primarily those located in young plantations with open tree canopies and grass-covered ground surfaces. The adverse effects of the COVID-19 pandemic were observed in specific labor-intensive crops, including rubber and durian, but were limited to the short term. No discernible impact was noted across the entirety of the study timeframe. In comparison, financial gain and climate change appeared to be more pivotal in influencing farmers’ decisions regarding crop cultivation. Traditionally dominant crops such as rice and oil palm have witnessed a discernible decline in cultivation, reflecting a decade-long trend of price drops preceding the pandemic. Conversely, Thai durian has seen a significant upswing even over the pandemic, which ironically served as a catalyst prompting Thai farmers to adopt e-commerce to meet the surging demand, particularly from China. 
    more » « less
  6. Mounted on top of furnaces, laboratory viscometers can be used for the rheological characterization of high temperature melts, such as molten rocks (lava). However, there are no instruments capable of measuring the viscosity of large volumes of high temperature melts outside the laboratory at, for example, active lava flows on volcanoes or at industrial sites. In this article, we describe a new instrument designed to be easy to operate, highly mobile, and capable of measuring the viscosity of high temperature liquids and suspensions (<1350 °C). The device consists of a torque sensor mounted in line with a stainless-steel shear vane that is immersed in the melt and driven by a motor that rotates the shear vane. In addition, a thermocouple placed between the blades of the shear vane measures the temperature of the melt at the measurement location. An onboard microcomputer records torque, rotation rate, and temperature simultaneously and in real time, thus enabling the characterization of the rheological flow curve of the material as a function of temperature and strain rate. The instrument is calibrated using viscosity standards at low temperatures (20–60 °C) and over a wide range of stress (30–3870 Pa), strain rate (0.1–27.9 s−1), and viscosity (10–650 Pa s). High temperature tests were performed in large scale experiments within ∼25 l of lava at temperatures between 1000 and 1350 °C to validate the system’s performance for future use in natural lava flows. This portable field viscometer was primarily designed to measure the viscosity of geological melts at their relevant temperatures and in their natural state on the flanks of volcanoes, but it could also be used for industrial purposes and beyond. 
    more » « less
  7. The CDK4/6 inhibitor palbociclib blocks cell cycle progression in Estrogen receptor–positive, human epidermal growth factor 2 receptor–negative (ER+/HER2−) breast tumor cells. Despite the drug’s success in improving patient outcomes, a small percentage of tumor cells continues to divide in the presence of palbociclib—a phenomenon we refer to as fractional resistance. It is critical to understand the cellular mechanisms underlying fractional resistance because the precise percentage of resistant cells in patient tissue is a strong predictor of clinical outcomes. Here, we hypothesize that fractional resistance arises from cell-to-cell differences in core cell cycle regulators that allow a subset of cells to escape CDK4/6 inhibitor therapy. We used multiplex, single-cell imaging to identify fractionally resistant cells in both cultured and primary breast tumor samples resected from patients. Resistant cells showed premature accumulation of multiple G1 regulators including E2F1, retinoblastoma protein, and CDK2, as well as enhanced sensitivity to pharmacological inhibition of CDK2 activity. Using trajectory inference approaches, we show how plasticity among cell cycle regulators gives rise to alternate cell cycle “paths” that allow individual tumor cells to escape palbociclib treatment. Understanding drivers of cell cycle plasticity, and how to eliminate resistant cell cycle paths, could lead to improved cancer therapies targeting fractionally resistant cells to improve patient outcomes. 
    more » « less
  8. Site U1561 (30˚43.2902′S, 26˚41.7162′W; proposed Site SATL-55A) is in the central South Atlantic Ocean at a water depth of 4910 meters below sea level (mbsl) ~1250 km west of the Mid-Atlantic Ridge (see Figure F1 and Tables T1, T2, all in the Expedition 390/393 summary chapter [Coggon et al., 2024d]) on crust that formed at a slow half spreading rate of ~13.5 mm/y, which is the slowest spreading rate in the study region (Kardell et al., 2019; Christeson et al., 2020; see Figure F7 in the Expedition 390/393 summary chapter [Coggon et al., 2024d]). With an estimated age of 61.2 Ma, Site U1561 is the oldest location of the South Atlantic Transect (SAT) campaign (International Ocean Discovery Program [IODP] Expeditions 390C, 395E, 390, and 393). Site U1561 sits on a basement ridge and is therefore less heavily sedimented than Sites U1556 and U1557, which are located ~25 km south of Site U1561 on 61.2 and 60.7 Ma ocean crust, respectively. Together, all sites in this region allow for investigation of the effect of sediment thickness on crustal evolution. 
    more » « less
  9. Site U1558 (30°53.7814′S, 24°50.4822′W; proposed Site SATL-43A) is in the central South Atlantic Ocean at a water depth of ~4334 meters below sea level (mbsl) ~1067 km west of the Mid-Atlantic Ridge (see Figure F1 and Tables T1, T2, all in the Expedition 390/393 summary chapter [Coggon et al., 2024c]) on crust that formed at a slow half spreading rate of ~19.5 mm/y (Kardell et al., 2019; Christeson et al., 2020) (see Figure F7 in the Expedition 390/393 summary chapter [Coggon et al., 2024c]). With an estimated age of 49.2 Ma, Site U1558 is the second oldest location of the South Atlantic Transect (SAT) campaign (International Ocean Discovery Program [IODP] Expeditions 390C, 395E, 390, and 393). 
    more » « less
  10. Site U1557 (30°56.4651′S, 26°37.7892′W, proposed Site SATL-56A) is in the central South Atlantic Ocean at a water depth of ~5011 meters below sea level (mbsl) ~1243 km west of the Mid-Atlantic Ridge (see Figure F1 and Tables T1, T2, all in the Expedition 390/393 summary chapter [Coggon et al., 2024d]) on crust that formed at a slow half spreading rate of ~13.5 mm/y, which is the slowest spreading rate in the study region (Kardell et al., 2019; Christeson et al., 2020) (see Figure F7 in the Expedition 390/393 summary chapter [Coggon et al., 2024d]; Reece et al., 2016; Reece and Estep, 2019). With an estimated age of 60.7 Ma, Site U1557 is just about the oldest location of the South Atlantic Transect (SAT) campaign (International Ocean Discovery Program [IODP] Expeditions 390C, 395E, 390, and 393). Site U1557 is more heavily sedimented than Site U1556, which is located 6.5 km west of Site U1557 on 61.2 Ma ocean crust. Together, both sites allow for investigation of the effect of sediment thickness on crustal evolution. 
    more » « less